Probing color fields with heavy quarkonia

C. Weiss (JLab), Non-Perturbative Color Forces in QCD, Temple U., 26–Mar–12 weiss@jlab.org

• Quarkonium size and structure

Parametric: Dynamical scales

Numerical: Potential models, Lattice QCD

ullet J/ψ photo/electroproduction at $W\gg W_{
m th}$ fnal, compass, hera, eic

Space-time picture in rest frame

GPD as color dipole moment of nucleon

"Gluon imaging" of nucleon

 \bullet J/ψ photo/electroproduction near threshold Cornell, SLAC, JLab 12 GeV

Kinematics of large t_{\min}, x

Gluonic form factor of nucleon

Nuclear targets → Talk Strikman

Connections: Small–size configurations, high– Q^2 meson production, high–t form factors, color transparency . . .

Heavy quarkonium: Scales and size

ullet Parametric: Non-relativistic system Cf. Positronium in QED, $v\sim lpha_{
m em}$

$$m \gg mv \gg mv^2$$
 mass momentum, binding inv. size energy

Effective field theory approach: Non-relativistic QCD, mv^n expansion \rightarrow Talks Butenschoen, Gay Ducati

• Numerical: Potential models
Eichten et al. 75; Quigg, Rosner 77

Typical $c \bar{c}$ distances $r \sim$ 0.2–0.3 fm \ll 1 fm

Transverse size in light—cone wave function $\langle r_T^2 \rangle = 2/3 \, \langle r^2 \rangle$

High–momentum components with $k\gtrsim m$ account for $\sim 30\%$ of $R_{00}(r=0)$ $^{\to}$ Decays

 J/ψ "moderately small," relativistic

Heavy quarkonium: Size from lattice QCD

Charmonium form factors

Separate ground \leftrightarrow excited states using matrix of correlation functions Dudek et al. $06 \rightarrow$ Light quarks, hybrid mesons

Artificial J/ψ "charge form factor" from current with $c \neq \bar{c}$ coupling

 J/ψ charge radius $\langle r^2
angle^{1/2} pprox 0.26$ fm

Also η_c , radiative transitions

Heavy quarkonium: Probe of color field

 Use heavy quarkonium as probe of color fields in light hadrons

Fields change with incident energy, size of $Q\bar{Q}$ configurations

Multipole expansion: Dipole $+ \dots$

Exclusive photo/electroproduction
 Also: Rescattering

Target recoils: Gluonic form factor

 Q^2 tests/changes "mix" of $Q\bar{Q}$ sizes

Theoretical challenges

Separate structures of target and probe: Operator methods, factorization Space—time picture, light—front quantization

Model gluonic structure of target

Unique small—size probe of gluon fields

Photoproduction: Kinematics

• Exclusive production $\gamma N \to J/\psi + N$ Invariant momentum transfer grows near threshold $|t_{\rm min,th}|=2.2\,{\rm GeV^2}$

Light–cone variables

 ζ "Plus" momentum transfer, cf. x_B large near threshold, but not $\zeta \to 1!$

 Δ_T Transverse momentum transfer

$$t = -(\zeta^2 m_N^2 + \Delta_T^2)/(1 - \zeta)$$

Two regimes

$$Wpprox W_{
m th}$$
 $t_{
m min}=$ 1–2 ${
m GeV}^2$, ζ large cf. nucleon elastic form factors Cornell, SLAC, JLab 12 GeV

$$W\gg W_{
m th}$$
 $t_{
m min}$ negligible, $\zeta\ll 1$ cf. diffractive processes FNAL, COMPASS, HERA, EIC

High W: QCD factorization and dipole picture

$$\langle N'|F_{+i}(0)F_{+i}(z^-)|N
angle$$
 $z^2=0$ light-like distance

 QCD factorization theorem Collins, Frankfurt, Strikman 96

Collinear factorization of amplitude $GPD \times Hard$ scattering \times Meson dist. amp.

GPD as transition matrix element of twist-2 operator: Gluonic form factor of nucleon $x_1=x_2, t=0$: Usual gluon density

• Space—time picture in rest frame Brodsky et al. 94

Coherence length $l_{\rm coh} \gg 1 \, {\rm fm}$

$$A = \int\!\! d^2r_T \; \psi_{\gamma}(m{r}_{
m T}) \; \underbrace{A_{Qar{Q}N}(m{r}_{
m T})}_{QQN} \; \psi_{J/\psi}(m{r}_{
m T}) \ \propto \; m{r}_{
m T}^2 \; lpha_s \; {
m GPD}({
m Scale} \propto m{r}_{
m T}^{-2})$$

Distribution of $Q\bar{Q}$ sizes determined dynamically, changes with energy, electroproduction Q^2 Cf. Color transparency

GPD = transition color dipole moment

High W: Data and interpretation

Frankfurt, Strikman, CW 11, $Q^2 \approx 3\,\mathrm{GeV}^2$

ullet J/ψ photo/electroproduction at high W well understood HERA data, extensive literature

Experimental tests of small—size regime Universality of t—slopes above $Q^2 \sim 10 \, {\rm GeV}^2$

GPD/dipole calc's describe cross sections Frankfurt et al. 95; Goloskokov, Kroll 08+; . . .

• Transverse spatial distribution of gluons

Fourier $oldsymbol{\Delta}_{\mathrm{T}}
ightarrow oldsymbol{b}$ impact parameter

Distribution changes with x and scale Q^2 : Parton diffusion, DGLAP evolution

Fundamental gluonic size of nucleon in QCD: Gluon vs. quark radii, non−pert. dynamics Nucleon polarization → Talk Metz

Input for small–x physics: Evolution equations, saturation

Needed for pp@LHC: Underlying event, multiparton processes, diffraction

Transverse gluon imaging of nucleon

Near threshold: Reaction mechanism

Near—threshold kinematics

Large $|t_{
m min}|$, up to 2.2 ${
m GeV}^2$ Large longit. momentum transfer $x_1-x_2=\zeta$ "skewness"

Reaction mechanism near threshold Strikman, CW, in preparation → Talk Strikman

 $\gamma gg~J/\psi$ vertex local on scale $R_{
m nucl}\sim 1~{
m fm}$.

Normalization fixed by $J/\psi \to gg\gamma$ decay.

Amp $\sim CF_{gg}(t)$ local gluonic form factor. Energy dependence through $F_{gg}(t_{\min})$ Consistent with existing low–energy data.

Could be tested with JLab 12 GeV

Theoretical questions

Matching collinear ↔ short–distance expansion?

Quantum numbers of gluonic operator?

Behavior of two-gluon form factor? Correlated configurations in nucleon LCWF? Cf. model of Brodsky, Chudakov, Hoyer, Laget 01

"Gluonic form factor" of nucleon!

Near-threshold: Nuclei and ψN interaction

ullet Kinematics of ψN scattering

$$t \approx 0$$
 accessible at all $W > W_{\rm th}$

"Ideal process" for probing color fields in hadrons and nuclei!

ullet Physics of low-energy ψN interaction

Operator expansion: Dipole-dipole interaction Fuji, Kharzeev 99

Van-der-Waals force of QCD Brodsky, Miller 97

Nuclear bound states?
Brodsky, de Teramond 90; Luke, Manohar, Savage 92

• Near-threshold $\gamma A \to J/\psi + X$

$$rac{p_{\psi}}{m_{\psi}}pproxrac{m_{\psi}}{2m_{N}}$$
 J/ψ fast, relativistic!

Produced J/ψ is fast — How to study bound states?

Summary

- \bullet J/ψ as small—size probe of color fields in hadrons "moderately small," relativistic
- ullet High-W photo/electroproduction at probes gluon GPD Transverse spatial distribution of gluons at fixed x
- Near—threshold photo/electroproduction probes local gluonic form factor

Theory/phenomenology developing "New physics" accessible with JLab 12 GeV!

• J/ψ fast in photoproduction

How to study low-energy ψN interaction, bound states?

• Connections with other JLab 12 GeV experiments

Small–size $q\bar{q}$ configurations in high– Q^2 meson production High–t form factors — gluon vs. quark operators? Color transparency — different probes Nuclear short–range correlations — high–momentum components in WF